备注:本文来源于互联网,做了部分修订。

在流处理中,时间是一个非常核心的概念,是整个系统的基石。我们经常会遇到这样的需求:给定一个时间窗口,比如一个小时,统计时间窗口内的数据指标。那如何界定哪些数据将进入这个窗口呢?在窗口的定义之前,首先需要确定一个作业使用什么样的时间语义。Flink的三种时间语义:Event Time、Processing Time和Ingestion Time。

eventtime.png

Event Time 事件时间

Event Time指的是数据流中每个元素或者每个事件自带的时间属性,一般是事件发生的时间。由于事件从发生到进入Flink时间算子之间有很多环节,一个较早发生的事件因为延迟可能较晚到达,因此使用Event Time意味着事件到达有可能是乱序的。

使用Event Time时,最理想的情况下,我们可以一直等待所有的事件到达后再进行时间窗口的处理。假设一个时间窗口内的所有数据都已经到达,基于Event Time的流处理会得到正确且一致的结果。无论我们是将同一个程序部署在不同的计算环境,还是在相同的环境下多次计算同一份数据,都能够得到同样的计算结果。我们根本不同担心乱序到达的问题。

但是,以上只是理想情况,现实中无法实现,因为我们既不知道究竟要等多长时间才能确认所有事件都已经到达,更不可能无限地一直等待下去。在实际应用中,当涉及到对事件按照时间窗口进行统计时,Flink会将窗口内的事件缓存下来,直到接收到一个Watermark,Watermark假设不会有更晚数据的到达。Watermark意味着在一个时间窗口下,Flink会等待一个有限的时间,这在一定程度上降低了计算结果的绝对准确性,而且增加了系统的延迟。比起其他几种时间语义,使用Event Time的好处是某个事件的时间是确定的,这样能够保证计算结果在一定程度上的可预测性。

一个基于Event Time的Flink程序中必须定义:一、每条数据的Event Time时间戳作为Event Tme,二、如何生成Watermark。我们可以使用数据自带的时间作为Event Time,也可以在数据到达Flink后人为给Event Time赋值。

总之,使用Event Time的优势是结果的可预测性,缺点是缓存较大,增加了延迟,且调试和定位问题更复杂。

Processing Time 处理时间

对于某个算子来说,Processing Time指算子使用当前机器的系统时钟时间。在Processing Time的时间窗口场景下,无论事件什么时候发生,只要该事件在某个时间段到达了某个算子,就会被归结到该窗口下,不需要Watermark机制。对于一个程序,在同一个计算环境来说,每个算子都有一定的耗时,同一个事件的Processing Time,第n个算子和第n+1个算子不同。如果一个程序在不同的集群和环境下执行,限于软硬件因素,不同环境下前序算子处理速度不同,对于下游算子来说,事件的Processing Time也会不同,不同环境下时间窗口的计算结果会发生变化。因此,Processing Time在时间窗口下的计算会有不确定性。

Processing Time只依赖当前执行机器的系统时钟,不需要依赖Watermark,无需缓存。Processing Time是实现起来非常简单,也是延迟最小的一种时间语义。

Ingestion Time摄入时间

Ingestion Time是事件到达Flink Source的时间。从Source到下游各个算子中间可能有很多计算环节,任何一个算子的处理速度快慢可能影响到下游算子的Processing Time。而Ingestion Time定义的是数据流最早进入Flink的时间,因此不会被算子处理速度影响。

Ingestion Time通常是Event Time和Processing Time之间的一个折中方案。比起Event Time,Ingestion Time可以不需要设置复杂的Watermark,因此也不需要太多缓存,延迟较低。比起Processing Time,Ingestion Time的时间是Source赋值的,一个事件在整个处理过程从头至尾都使用这个时间,而且后续算子不受前序算子处理速度的影响,计算结果相对准确一些,但计算成本比Processing Time稍高。

标签: none

添加新评论